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Abstract. A naive Bayes classifier is a simple probabilistic classifier based on ap-
plying Bayes’ theorem with naive independence assumption. The explanatory vari-
ables (Xi) are assumed to be independent from the target variable (Y ). Despite this
strong assumption this classifier has proved to be very effective on many real applica-
tions and is often used on data stream for supervised classification. The naive Bayes
classifier simply relies on the estimation of the univariate conditional probabilities
P (Xi|C). This estimation can be provided on a data stream using a ”supervised
quantiles summary”. The literature shows that the naive Bayes classifier can be im-
proved (i) using a variable selection method (ii) weighting the explanatory variables.
Most of these methods are related to batch (off-line) learning and need to store all
the data in memory and/or require reading more than once each example. There-
fore they cannot be used on data stream. This paper presents a new method based
on a graphical model which computes the weights on the input variables using a
stochastic estimation. The method is incremental and produces an Weighted Naive
Bayes Classifier for data stream. This method will be compared to classical naive
Bayes classifier on the Large Scale Learning challenge datasets.

1 Introduction

Since the 2000s, the data mining from streams became a standalone research
topic. Many studies addressing this new problem have been proposed (Gama
(2010)). Among the solutions to the problems of learning on data streams, the
incremental learning algorithms are one of the most used techniques. These
algorithms are able to update their model using just the new examples.

In this article we focus on one of the most used classifier in the literature:
the naive Bayes classifier. We modify this classifier in order to make on-line
supervised classification on data streams. This classifier only needs conditional
probability P (Xi|C), with Xi an explanatory variable and C a class of the
classification problem. Its complexity to predict is very low which makes it
suitable and widely used for stream mining prediction.
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Nevertheless it has been proved for batch learning that selecting (Koller
and Sahami (1996)), Langley and Sage (1994)) or weighting (Hoeting et al.
(1999)) variables can improve the classification results. Moreover Boullé in
(Boullé (2006b)) shows the close relation between weighting variables and
averaging many naive Bayes classifier in the sense that at the end the two dif-
ferent processes produce a similar single model (see equation 1). In this paper
we particularly focus on weighting variables for data streams for a naive Bayes
classifier. This weighting produces a single model close to an “averaged naive
Bayes classifier” a “weighted naive Bayes classifier”. We propose a graphical
model and a learning method to compute these weights.

The present work aims to study a new way to estimate incrementally the
weights of a Weighted Naive Bayes classifier (WNB) using a graphical model
close to a neural network. The paper is organized as follow: our graphical
model and the way to compute its parameters (the weights) are presented in
section 2 ; the section 3 presents how the conditional density estimations, used
as inputs of our model, are estimated ; the section 4 realizes an experimental
study of our Weighted Naive Bayes classifier trained incrementally on the
large scale learning challenge datasets. Finally the last section concludes this
paper.

2 Incremental Weighted Naive Bayes classifiers

2.1 Introduction: Naive Bayes Classifier (NB) and Weighting
Naive Bayes Classifiers (WNB)

The naive Bayes classifier (Langley et al. (1992)) assumes that all the ex-
planatory variables are independent knowing the target class. This assumption
drastically reduces the necessary computations. Using the Bayes theorem, the
expression to obtain the estimation of the conditional probability of a class

Ck is: P (Ck|X) =
P (Ck)

∏
i P (Xi|Ck)∑K

j=1(P (Cj)
∏

i P (Xi|Cj))
where K is the number of classes, i

the index of the explanatory variable.
The predicted class is the one which maximizes the conditional probabil-

ities P (Ck|X). The probabilities P (Xi|Ck) are estimated using a conditional
probability density estimation as for example using counts after discretization
for numerical variables or grouping for categorical variables. The denominator
of the equation ?? normalizes the result so that

∑
k P (Ck|X) = 1. One of the

advantages of this classifier in the context of data stream is its low complexity
for deployment, which only depends on the number of explanatory variables.
Its memory consumption is also low since it requires only one conditional
probability density estimation per variable.

The literature shows that the naive Bayes classifier could be improved (i)
using a variable selection method (Koller (1996), Langley and Sage (1994))
(ii) weighting the explanatory variables which amounts to a Bayesian Model
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Averaging (BMA) (Hoeting et al. (1999)). These two processes can be mixed
iteratively. The formulation of the conditional probabilities becomes:

P (Ck|X) =
P (Ck)

∏
i P (Xi|Ck)wi∑K

j=1(P (Cj)
∏
i P (Xi|Cj)wi)

(1)

where each explanatory variable i is weighted by a weight wi (wi ∈ [0− 1]).

2.2 The proposed approach

In off-line learning, the weights of the Weighted Naive Bayes Classifiers can
be estimated using (i) an averaging of the Naive Bayes classifiers obtained
(Hoeting et al. (1999)) (ii) an averaging of the Naive Bayes classifiers obtained
using a MDL (Minimum Description Length) criterion (Boullé (2006b)) (iii)
a direct estimation of the weights using a gradient descent (Guigoures and
Boullé (2011)). But all these methods require to have all the data in memory
and to read them several times. The method proposed in this paper optimizes
directly the weights of the classifier and is able to work on data stream.

The first step has been to elaborate a graphical model (see Figure 1) ded-
icated to the optimization of the weights. This model allows the rewriting of
the equation 1 as a graphical model where the Weighted Naive Bayes classi-
fier has a weight per class and per variable as presented in the equation 2.
The number of weights is therefore higher since the weights are no longer just
associated with a variable, but with a variable conditionally to a class: wik is
the weight associated to the variable i and the class k, bk is the bias associated
to the class k.

The first layer of our graphical model is a linear layer which realizes a
weighted sum Hk for every class k, such as: Hk =

∑d
i=1 wiklog(P (Xi|Ck))+bk.

The second layer is a Softmax such as: Pk = eHk∑K
j=1 e

Hj
. Finally the graphical

model, in the case where the inputs are based on the log conditional density
estimation (log(p(Xi|Ck),∀i, k), gives the values (∀k) of the P (Ck|X) such as:

Pk =
ebk+

∑d
i=1 wi,klog(p(Xi|Ck))∑K

j=1 e
bj+

∑d
i=1 wi,j log(p(Xi|Cj))

(2)

The input variables used as the inputs of this graphical model come from
the on-line summaries described in section 3.

The optimization of the weights is done using a stochastic gradient descent
for a given cost function. For a given example X the weights updates follow
the formulae:

wt+1
ij = wtij − η

∂CostX

∂wij
(3)

where CostX is the cost function applied to the example X and ∂CostX

∂wij
the

derivative of the cost function w.r.t. the parameters of the model, here the
weights wij .
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Fig. 1. Graphical model dedicated to the optimization of the weights.

The detail of this calculation is presented in the appendix of this paper,
the result is simple:

∂Cost

∂Hk
= Pk − Tk,∀k (4)

where Tk is the desired probability and Pk the estimated probability. So the
update of the weights has a very low complexity.

The method used to update the weights is the one used usually for a
standard back-propagation and three main parameters have to be considered
(Lecun et al. (1998)) in the case of stochastic gradient descent: (i) the cost
function; (ii) the number of iterations; (iii) the learning rate. For the cost
function in the supervised classification context the best choice, since the
output to learn takes only two values {0, 1}, is the log-likelihood (Bishop
(1995)) which optimizes log(P (Ck|X)). The number of iterations in our case is
set to 1 since each example of the stream is used only once for training. Finally
the only parameter to set is the learning rate. A too small value will give a slow
convergence but a high value may not allow reaching a global minimum. For
off-line learning this value can be adjusted using a cross validation procedure
but for on-line learning on data streams this procedure cannot be applied.
In the experiments presented below the learning rate is fixed to η = 10−4.
However if we expect concept drift it could be interesting to have an adaptive
learning rate as in (Kuncheva and Plumpton (2008)).

3 Conditional density estimation

This section presents how the conditional density probabilities used as inputs
of our graphical model are estimated. This is not the main contribution of
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this paper therefore the three methods used are briefly described. We use in
the experimental part of this paper three methods (See Figure 2) to compute
the conditional density probability for each numerical explanatory variable
and for each target class: (i) our two layers incremental discretization method
based on order statistics as described in (Salperwyck and Lemaire (2013)) (ii)
a two layer discretization method “cPiD” which is a modified version of the
PiD method of Gama (Gama and Pinto (2006)) (iii) and a Gaussian approxi-
mation. The approach could be the same for categorical variable (not detailed
in this paper) by putting in the first level the count-min sketch approach and
in the second level the grouping MODL method.

Fig. 2. On-line summaries for numerical variables: two level approach for GK-
Class+MODL and cPiD+MODL and single level approach for the Gaussian ap-
proximation.

The two level approach is based on a first level which provides quantiles
which are order statistics on the data stream for every explanatory variable
i. Each quantile, q, is a tuple which contains: < viq, g

i
q, (g

i
qj)j=1,...K

> where

for each explanatory variable i of the data stream (i) viq is a value (ii) giq
corresponds to the number of values between viq−1 and viq (iii) (giqj) is, for the
K classes of the supervised classification problem, the number of elements in q
belonging to the class j. The second level is a batch algorithm applied on the
quantiles. In this paper the number of tuples is equal to 100 corresponding to
the estimation of centiles. The tuning of the number of quantiles is discussed
in (Salperwyck (2012)). cPid and GkClass, described below, are two different
methods to obtained quantiles.

3.1 cPid

Gama and Pinto in (Gama and Pinto (2006)), proposed a two layer incremen-
tal discretization method. The first layer is a mix of a discretization based
on the methods “Equal Width” and “Equal Frequency” (algorithm details:
(Gama and Pinto (2006)) p. 663). This first layer is updated incrementally
and needs to have much more bins than the second one. The second layer uses
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information of the first one to build a second discretization. Many methods
can be used on the second layer such as: Equal Width, Equal Frequency, En-
tropy, Kmeans... The advantage of this method is to have a fast first layer
which can be used to build different discretizations on it (second layer).

In cPid we propose to change PiD to use a constant memory. In order to
keep memory usage constant, after each split we merge the two consecutive
intervals with the lowest counts sum. Thus the number of stored intervals
remains constant. The second layer used is the MODL discretization (Boullé
(2006a)). For brevity PiD and cPiD are not compared in this paper but in-
terested readers can find this comparison in (Salperwyck (2012)).

3.2 GKClass

This algorithm proposed by Greenwald and Khanna (Greenwald and Khanna
(2001) is an algorithm to compute quantiles using a memory of O( 1

ε log(εN))
in the worst case. This method does not need to know the size of the data in
advance and is insensitive to the arrival order of the examples. The algorithm
can be configured either with the number of quantiles or with a bound on
the error. We adapted the GK summary to store directly the class counts in
tuples. The second layer used is the MODL discretization (Boullé (2006a)).

The MODL discretization [5] and grouping are supervised and do not need
any parameters. They are based on class counts and evaluate all possible
intervals for the numerical variables and groups for the categorical variables.
The quality evaluation of the model is based on a Bayesian approach. For
numerical variables, its purpose is to find the best discretization parameters:
number of intervals, frontiers of the intervals and class distribution in the
intervals in a Bayesian sense. For categorical variables the method performs
grouping in a similar way.

3.3 Gaussian approximation

The main idea of this method relies on the hypothesis that the observed data
distribution follows a Gaussian law. Only two parameters are needed to store
a Gaussian law: its mean and its standard deviation. The incremental version
requires one more parameter: the number of elements. This method has one
of the lowest memory footprints and is constituted of a single layer but is
dependent on the Gaussian assumption. It will be used as a reference method
as the Large Scale Learning challenge datasets are generated using a Gaussian
generator.

4 Experiments

4.1 Protocol

The Large Scale Learning challenge datasets (organized by the network of ex-
cellence PASCAL, http://jmlr.csail.mit.edu/papers/topic/large_scale_
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learning.html) have been used for the experiments. These datasets are con-
stituted of 500,000 labeled examples which is large enough to evaluate an
on-line classifier. The datasets alpha, beta, delta and gamma contain 500 nu-
merical explanatory variables and the dataset epsilon and zeta 2000 numerical
variables. The 100,000 first examples have been used as the test dataset and
the remaining examples as the train dataset.

4.2 Results

For the first part of the experiments, a standard naive Bayes (without the
weighting) is used on the top of the summaries described in section 3. The
results are presented in table 1 and shows that the estimation of the condi-
tional probabilities is accurate for all methods used since all the naive Bayes
classifiers obtain good results. Despite the fact that the large scale learning
datasets come from Gaussian generators the two others summaries obtain
similar results without the Gaussian assumption. One additional advantage
of the method based on GKClass summaries (level 1) with the MODL dis-
cretization (level 2) is that it guarantees a maximal error for a given memory
on the quantile estimation. Therefore this two level method is used for the
second part of the experiments.

Alpha Beta Delta
#train examples � 40 000 100 000 380 000 40 000 100 000 380 000 40 000 100 000 380 000

GKClass 54,40 54,49 54,56 49,79 51,05 51,23 80,56 82,22 83,47
CPiD 54,36 54,52 54,57 49,79 51,09 51,12 80,66 82,39 83,77

Gaussien (niveau 1) 54,62 54,67 54,67 51,21 51,50 51,31 84,58 85,10 85,08

Gamma Epsilon Zeta
#train examples � 40 000 100 000 380 000 40 000 100 000 380 000 40 000 100 000 380 000

GKClass 92,63 93,51 94,23 70,48 70,37 70,43 78,35 78,63 78,48
CPiD 92,93 93,83 94,41 70,52 70,38 70,36 78,50 78,48 78,42

Gaussian 95,09 95,10 95,16 70,66 70,57 70,43 78,96 78,77 78,52

Table 1. Accuracy of a Naive Bayes (without Averaging) using the three methods
to compute the conditional probabilities.

Knowing the results of the table 1, we know that the estimation of the
conditional probabilities is accurate. Therefore the behavior of our Weighted
Naive Bayes can be studied. The results are obtained using 4 classifiers: (1)
a naive Bayes (NB) trained offline with the MODL discretization (Boullé
(2006a)) and all the data in memory; (2) an Averaged Naive Bayes (ANB)
trained offline with the MODL discretization (Boullé (2006a)), this algorithm
is described in (Boullé (2006b)) to compute the weights and all the data in
memory - this method is one of the best of the literature see (Guyon et al.
(2009)) (3) a Naive Bayes trained online with the two level discretization
method which uses GKClass (level 1) and the MODL discretization (level 2)
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4) a Weighted Naive Bayes trained online with the two level discretization
method which uses GKClass (level 1) and the MODL discretization (level 2)
and our method based on the graphical method to estimate the weights.

Alpha Beta Delta
#train examples� 40 000 100 000 380 000 40 000 100 000 380 000 40 000 100 000 380 000

Offline NB (1) 54,60 54,61 54,61 49,79 51,36 51,19 80,78 82,44 83,91
Offline ANB (2) 66,13 67,30 68,77 49,79 51,39 53,24 80,80 82,46 83,91

Online NB (3) 54,40 54,49 54,56 49,79 51,05 51,23 80,56 82,22 83,47
Online ANB (4 ) 64,03 66,40 67,61 49,79 49,79 52,20 75,35 77,74 79,53

Gamma Epsilon Zeta
#train examples � 40 000 100 000 380 000 40 000 100 000 380 000 40 000 100 000 380 000

Offline NB (1) 92,95 93,99 94,63 70,35 71,04 70,58 78,39 78,34 78,26
Offline ANB (2) 92,95 94,00 94,64 84,36 85,34 86,01 88,67 89,51 90,43

Online NB (3) 92,63 93,51 94,23 70,48 70,37 70,43 78,35 78,63 78,48
Online ANB (4) 90,25 91,05 91,76 69,25 74,76 79,95 73,82 79,91 84,52

’

Table 2. Comparison of the Accuracy of Naive Bayes (NB), the averagated Naive
Bayes (ANB) and the weighted Naive Bayes (WNB) . The best ‘offline-result’ is in
italics and the best ‘online result’ is bold.

The table 2 shows that the results obtained by our On-line WNB are very
interesting: it is better than the on-line NB except for the Gamma and Delta
datasets. Its performance is close to the Off-line ANB which is the ”best re-
sults” which can be obtained on these datasets with Bayes type classifiers.
But the classifier makes the assumption that all the data are stored in mem-
ory and readable several times whereas this is not possible on data streams.
Our WNB approach uses a low amount of memory thanks to the two level ap-
proach to estimate the conditional densities, and is purely incremental thanks
to the graphical model and the stochastic gradient descent to estimate the
weights. Therefore the results of our approach are very promising. The accu-
racy obtained versus the number of examples used to train the model seems
to indicate that our on-line WNB (4) and the off-line ANB (2) would have the
same accuracy if the number of examples was higher. The dimension could also
be an explanation (Alpha, Beta, Delta and Gama have 500 numerical vari-
ables, Epsilon and Delta have 2000 variables) since the accuracy obtained by
Online WNB increases significantly with the number of examples for Epsilon
and Zeta. These points will be investigated in future works.

5 Conclusion

The results for our on-line weighted version of the Naive Bayes classifier are
promising. It improves the performance compared to the non-weighted ver-
sion and is close to the off-line averaged version of the naive Bayes classifier.
However we think that its results could be improved in future works. The first
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idea would be to use the GK Class summaries as ”mini-batch” (Cotter et al.
(2011)) and do several iterations to speed up the gradient descent. The second
idea would be to use an adaptive learning rate: high at the beginning and low
after, or to take into account the error rate as in (Kuncheva and Plumpton
(2008)). Future works will be done in these directions.
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Appendix - Derivative of the Cost Function

The graphical model is built to have directly the values of the P (Ck|X) at the output.
The goal is to maximize the likelihood and therefore to minimize the negative log
likelihood. The first step in the calculation is to decompose the softmax considering
that each output could be seen as the succession of two steps: an activation followed
by a function of this activation.

Here the activation function could be seen as: Ok = f(Hk) = exp(Hk) and the
output of the softmax part of our graphical model is: Pk = Ok∑K

j=1 Oj
. The derivative

of the activation function is:

∂Ok

∂Hk
= f ′(Hk) = exp(Hk) = Ok (5)

The cost function being the −log likelihood, we have to consider two cases: (i)
the desired output is equal to 1 or (ii) the desired output is equal to 0. For the
following we note:

∂Cost

∂Hk
=

∂C

∂Pk

∂Pk

∂Ok

∂Ok

∂Hk
(6)

In the case where the desired output of the output k is equal to 1 by
replacing (5) in (6):

∂Cost

∂Hk
=

∂C

∂Pk

∂Pk

∂Ok

∂Ok

∂Hk
=
−1

Pk

∂Pk

∂Ok
Ok (7)

∂Cost

∂Hk
=
−1

Pk

 K∑
l=1,l 6=k

(
Ol

(
∑K

j=1 Oj)2
)

Ok =
−1

Pk

[
(
∑K

j=1 Oj)−Ok

(
∑K

j=1 Oj)2

]
Ok (8)

∂Cost

∂Hk
=
−1

Pk

[
(
∑K

j=1 Oj)−Ok

(
∑K

j=1 Oj)

]
Ok

(
∑K

j=1 Oj)
=
−1

Pk

[
1− Ok

(
∑K

j=1 Oj)

]
Ok

(
∑K

j=1 Oj)

(9)
Therefore

∂Cost

∂Hk
=
−1

Pk
[1− Pk]Pk = Pk − 1 (10)

In the case where the desired output of the output k is equal to 0 the
error is only transmitted by the normalization part of the softmax function since
the derivative for an output where the desired value is 0 is equal to 0. Therefore
with similar steps we have: ∂Cost

∂Hk
= Pk

Finally we conclude: ∂Cost
∂Hk

= Pk − Tk,∀k where Tk is the desired probability

and Pk the estimated probability. Then the rest of the calculation of ∂Cost
∂wik

. is
straightforward.


